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Abstract

The logic of a Boolean system of finite degrees of freedom is shown to be atomic if and
only if the system obeys a deterministic theory, This is, therefore, the physical meaning
of atomicity. Furthermore, it is proved that nondeterminacy of such a system implies
the nonexistence of phase space.

I

In this note classical mechanics is again considered as a special case of
generalised physical theory defined by Kronfli (1970a). The same notation
will be employed. We distinguish between a classical theory and a (classical)
deterministic one. The former is one in which each pair of observables is
compatible. Axiomatically, therefore, a classical system of finite degrees
of freedom will necessarily have a logic . which is a countably generated
Boolean c-algebra.

We define a deterministic system to be a classical one such that there
exists a non-empty subset &, of the set of its states S where for each state
in &, at least one observable has zero variance and furthermore &, is
an invariant of the dynamical subgroup & of the group Aut(<%) of convex
automorphisms of . This apparently weak condition gives the full
determinism of classical mechanics.

The meaning of lattice atomicity for the logic of a classical mechanical
system has been obscured in the literature. This note shows that atomicity
is both a necessary and sufficient condition for a Boolean system of finite
degrees of freedom to be deterministic. In other words, the two are syn-
onymous.

Unlike a countably generated o-field of subsets of a set, an abstract
countably generated Boolean o-algebra need not be atomic. (Take, for
example, the quotient of all the Borel subsets of the unit interval on the
line modulo the sets of Lebesgue measure zero.) In a previous paper
(Kronfli, 1970b), atomicity of the (Boolean) logic of a classical system of
finite degrees of freedom, was shown to be a sufficient condition for the
system to be deterministic. A Boolean system, although classical, need not
be deterministic. In this paper it is shown that atomicity is also a necessary
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condition. It will also be shown that without the condition of determinism,
classical phase space need not even exist. The reader may compare the
above-mentioned results with the objections to atomicity stated by Birkhoff
& von Neumann (1936).

I

From now on .Z is a countably generated Boolean o-algebra (the logic
of a classical system S of finite degrees of freedom), & is the set of all
probability measures on % (the states of .S) and & the set of all extreme
points of the convex set & (the pure states of S). Our first result shows the
equivalence of Z# @ to the atomicity of £.

Proposition 1

The set & is not empty if and only if £ is atomic. In this case
P ={q,:ac A}, where o is the set of atoms of £ and q, is the atomic
measure concentrated at the atom a.

Proof: Assume % is atomic. Then clearly for each a e &, g, #. Thus
P+ z. That {q,:ae .} equals & follows from Theorem 3 of Kronfli
(1970b). ,

Conversely, assume Z+# @ and p € &. First we assert that range(p) =
{0,13. If this is not so, then there exists a € £\{ ,1} such that 0 < p(a) < 1.
Define py, p, € & by

1(x) =(p@)~' p(x A a)
pax) =(1—p(@))™ p(x A @)

(xeP)

This gives

p=p@).p1 +(1—p(a).p
with p, #p,, since p,(a@) =1 and p,(a) =0. This is a contradiction, since
p is an extreme point of the convex set %, Hence, range(p) = {0,1}. Now
let (a,) =% generate 2. Since p(x) is either 0 or 1 for each x € &, we choose
b,=a, or b,=a,’ such that p(b,) =1 for all n. Clearly (b,) generates .Z.
Put b= /"\b,,. Since p(b) = 1 then b+ . Let

RA={xeL:b<xorb<x'}

Clearly, Z is a Boolean sub-c-algebra of .% containing its generators (b,)
and, therefore, Z = % . But since b# &, the above result can not be possible
unless b is an atom of Z. For, let x €% and x < b. Since #Z =%, then
either b < x or b < x'. The first case gives x =5 and the second x = &.
Hence b is an atom.

With the assumption ## @ we proved that o7 # @ . It remains to show
that .Z is atomic, i.e. each non-zero element of ¥ dominates at least one
atom. Let, therefore 2, Q., Z(£2), p and y be as in Theorems 1 and 2 of
Kronfli (1970b). Since ¢ maps #(£2) onto &, then for each non-zero and
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non-atomic element a € . there exists 4 e #(£2), which is not a singleton,
since v is a bijection on £, onto &7, with A N 2,# @ and p(4) =a. (It is
easy to see that this corollary to Theorem 2 holds simply with the assump-
tion o/ # @.) Let xe A N Q.. Then y(x) is an atom and y(x) < a. This
completes the proof. M

Using the definition of determinism given in the first section, we show
that determinism and atomicity of the logic are equivalent. The obvious
candidate for & is Z.

Proposition 2

The countably generated Boolean o-algebra £ is the logic of a deter-
ministic system if and only if & is atomic.

Proof: Let p e & and u be an observable whose variance in p is zero. Let
7 be its expectation value,

f t pou(dt)

which is necessarily finite. Then
f (t — ) pou(dt)=0
R

Hence the function ¢ — (f — 7)* on R — R is zero (p o u) almost every-
where. This is possible only if p o u is an atomic measure concentrated at
7. Put a = u({7}). Then q is either @ or an atom of £. But p(@) =1, and
hence ais an atom and p = g, € &. Thus & is not empty and by Proposition
1.% is atomic. Thus at least &, <=Z. Also, each element of Aut(#), and
hence of the dynamical group &, is a bijection of & onto itself. Therefore
determinism implies the atomicity of .%.

Conversely, atomicity of . implies that the theory of the system is
deterministic as was shown in Kronfli (1970b). I

Corollary

Let £ be the logic of a Boolean system S of finite degrees of freedom.
Then the phase space of S does not exist if S is non-deterministic.

Proof: Assume S is non-deterministic with non-empty phase space. Since
phase space is equipotent to & (Kronfli, 1970b), then & is not empty.
From Propositions 1 and 2, S is deterministic, which is a contradiction. B
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